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Abstract-An infinite elastic strip rests under gravity on a smooth elastic half plane. The strip is loaded by a
steadily moving concentrated force which produces a partial separation of the layer from the foundation.
Using the plane strain theory of elasticity, the resulting nonsymmetric mixed boundary value problem is
reduced to singular integral equations over the unknown noncontact regions. For various material
combinations and a range of force and speed, the location of the noncontact regions, the lower boundary
displacements, and the foundation contact pressure are computed. Results for the corresponding problem
with a stationary load are also given.

INTRODUCTION

Contact problems between elastic strips and foundations have been the subject of many
investigations. In [1] Keer et al. solved the plane and axisymmetric problems of an infinite
elastic strip pressed against an elastic half plane in the absence of gravity. In [2] they
generalized their treatment to include nonsymmetric load distributions and in [3] to deal with a
layer with a slightly curved substrate. Ratwani and Erdogan solved the problem of a layer
pressed against a half space by rigid stamps[4] and the axisymmetric problem with an elastic
stamp [5]. The lifting of a semi-infinite strip lying on a rigid foundation is treated by Keer and
Silva[6]. Civelik and Erdogan solved the problems of an infinite elastic strip resting on a rigid
foundation and subjected to an upward directed load [7] and a downward directed load [8].

Such problems with steadily moving loads have just recently been investigated. The solution
for a steadily moving upward load acting on Euler-Bernoulli and Timoshenko beams resting on
a rigid foundation is given by Adams and Bogy [9] and by Adams[lO] for an elastic strip. In[l1]
Adams solves the problem of a downward directed load acting on an elastic strip resting on a
rigid foundation and in[l2] for an elastic strip and half plane in the absence of gravity. The
presence of gravity as well as a downward load generally produces two regions of separation
which changes the method as well as the nature of the solution.

In this paper an elastic layer is pressed against a smooth elastic half plane by a steadily
moving load as well as gravity. Solutions are obtained for an infinite strip and half plane which
are then related through interface continuity conditions. Using integral transform techniques,
the mixed boundary value problem is reduced to singular integral equations which are solved
numerically by the method of Erdogan and Gupta[13]. Solutions are obtained for a range of
speed and material combinations. These result in symmetric and nonsymmetric configurations
for up to two noncontact regions. Finally the results obtained for the corresponding static
problem are listed.

PROBLEM FORMULATION

The problem under consideration deals with a two-dimensional (plane strain) homogeneous
and isotropic elastic layer of constant thickness h which is resting under gravity on a smooth
elastic half plane of different material properties. The strip is SUbjected to a downward directed
steadily moving concentrated force P, which tends to produce a partial separation of the layer
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Fig. 1. An elastic layer resting on an elastic half-space ans subjected to a steadily moving load.

from the foundation (Fig. 1). The appropriate displacement equations of motion are

,.,2- (' )av_ a
2
Ua F -12/-I- v Ua + 1\ +U aX

a
- P ---atr - a, a - , (1)

where A, /-1-, P are the Lame's constant, shear modulus, and mass density, Ua, Fa are the
components of displacement, and body force, and where

aUl aU2 F
v =-a+-a' a =(0, - pg).

Xl X2

By transferring to a dimensionless coordinate system moving with the load at constant
speed, eqn (1) becomes

(2)

where

~l - p =(x - ct)/h, 6 =x2/h,

U~(~h ~2) = (/-I-/pgh 2)ua (xh X2, t)

Ua = u~ - ua
g

, Ul
g =0, ul =-6(1- ~J2)/82

f3a = C/Ca, 8 = CtlC2' Cl = v'(A +2/-1-)/p, C2 = v'(/-I-/p).

(3)

Thus u~ is the dimensionless displacement, ua
g is the displacement due to gravity, and the Ua in

(2) is a residual displacement field. The stress-displacement relations are then written in the
dimensionless form

(4)

Now superscripts (') and (") will be used to refer to the strip and half plane respectively.
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The boundary and continuity conditions to be applied are

uh(g.. g2), 171M.. g2), 17;M.. g2)~0 as IgII~ 00, 0< g2 < 1

u~M.. g2), U'{2(g.. g2), u'{M.. g2)~0 as g12+ gl~oo

ub(g.. 1) = 0, I~II < 00

172M.. 1) = - P~(~I - p), Igil < 00

uiM.. 0) = 0, I~II < 00

171M.. 0) = 0, I~II < 00

172M.. 0) = ~4u~M.. 0), Igll < 00

U2(~" 0) = ~IU~(~.. 0), Igil < 8.. ~I > 82, ~I < - 83

172M.. 0) = 1, 81 < gl < 82, - 83 < ~I < - 81
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(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(8.. 82, 83 initially unknown) represents the noncontact lower boundary, assumed for the
present to be two regions. The parameter p is chosen so that the origin of the coordinate
systems occurs at the midpoint of the central contact region. Regularity conditions will be
required to assure that the slope at the bottom surface at the contact points is continuous.
Finally all physically admissible solutions must be such that the normal stress u~M.. 0) remain
compressive in the contact region, and the normal displacement u~(~.. 0) be positive in the
noncontact region.

INFINITE STRIP SOLUTIONS

Considering the infinite strip and applying the exponential Fourier transform to (2), (4),
(7)-(9), the following integral expressions (see [10] for details) are obtained for the normal
displacement and normal stress on the lower boundary of the strip

(15)

(16)

where

S(w) = (a sinh A2- sinh AI)/27rtJ., tJ. = a cosh AI sinh A2- cosh A2sinh A..

a = (1-~/322)/K1K2, A'Y = WK~, K~= (1- /3~2)1/2, 'Y = 1,2 (17)

R(w) = [2AJtJ.][2a(1- cosh Al cosh A2) +(a 2+ 1) sinh AI sinh A2],

and B(w) is unknown. Now (15) and (16) will be decomposed into even and odd functions of ~I'

This is accomplished by writing

where

(18)

and recognizing that R(w) and S(w) are even functions of w, which gives
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p'z (OO
U2(~h 0) = \I(~1T) Jo [iBz(w) COS ~1 +B 1(w) sin w~I1 dw,

0'2Mh 0) = ~C!;) LOO [iBz(w) cos W~I +B1(w) sin w~I]R(w) dw.

(19)

(20)

HALF PLANE SOLUTION

Applying the exponential Fourier transform to (2), (4), (6) and (10), the normal displacement
and normal stress on the boundary of the half plane become

(21)

(22)

where

(23)

and C(w) is unknown.
The quantity Q defined in (23) and a in (17) are closely related to the Rayleigh functions of

the half plane and strip respectivley. Decomposing C(w) according to

where

eqns (21), (22) become

p"Z (OO
U~(~h 0) =\I(2~)K~ Jo [iCz(w) cos w~. +C.(w) sin W~I] dw,

O'~Mh 0) = ~(~) Q LOO w[iCz(w) cos W~l + C 1(w) sin w~I1 dw.

(24)

(25)

(26)

CONTINUITY AT THE INTERFACE

By applying continuity of normal stress (11) the unknowns Cz(w) and C.(w) are expressed
directly in terms of Bz(w) and B1(w) using (20) and (26) and appear as

Q~4WCz(W) = iV(21T)PS(W) cos wp +Bz(w)R(w),

Q~4WC.(W)= -V(21T)PS(W) sin wp +B.(w)R(w).

(27)

(28)

For convenience we define n as the noncontact region (14), and R as the real line ~z = 0,
-00 < ~. < 00. The first mixed condition (12) can be satisfied by the following integral represen­
tations

(29)

(30)
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along with (9) and (25) obtaining

889

in which the identity [14; p. 18, eqn 1]

rp-I sin px cos py dp = (1T/2) sgn (x)H(lxl-IYI)

was used, where H(x) is the unit step function. Now using H(x) = 1-H(-x) in (29) and
imposing

(32)

where

(33)

the relative normal iterfacial displacement finally becomes

(34)

which satisfies (12).
In order to satisfy (3) the normal stress is written as

where

(36)

y(x) =r S(w) cos wx dw, S(w) =wS(w)/[w - GS(w)].

In obtaining (35), the relations (27)-(30) were substituted into (20). Now decomposing R(w)
according to

R(w) = -a2w[l- k(w)],

k(w) = k(w)/{1 +2K2(1- a)G[1- k(w)]}, (37)
k(w) = -{a2e-A1 sinh A2 + ale -AI cosh A2 + e-A2 cosh A\ - 2] +e-A2 sinh A.}/O- a).<:1(w)

and using

d ioo

-I' . d x-d p smpxsmpy p =~,
Y 0 x - y

which can be obtained by differentiating [14; p. 78, eqn 1], the foundation contact pressure
becomes
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where

G. G. ADAMS

(39)

SOLUTION TYPES

For sufficiently small combinations of force and speed it can be expected that the layer
would be in complete contact with the foundation. The possibility of such solutions existing is
investigated by setting n=0, p =0 in (38) obtaining

(40)

This expression is then evaluated numerically subject to the condition that r*({) > 0 for
-00 < {) < 00. The maximum force P for complete contact is shown in Fig. 2 for a range of speed
and different material properties. Separation initially occurs at two points located symmetrically
about the applied load, as indicated in Fig. 3.
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Fig. 2. Force •P' required to initiate separation vs speed {3;.
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Fig. 3. Location of points of initial separation 8 vs speed {3:.
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The possible existence of two noncontact regions is investigated by setting n == (- 83,

- ( 1)v(811 ( 2), using (33), (38) and (13) obtaining

lr3L~:' [t ~ l) +K(el - t) ] q,)(t) dt + lr3 Ie:2 [t ~ l) +K(el - t) ] q,2(t) dt +Pj(e) - p) == -1/2,

- 83 < l) < - 811 8) < el < 82, (41)

subject to (32). This system of singular integral equations will be solved numerically with the
collocation method of Erdogan and Gupta[13]. An iterative scheme will be necessary in order
to determine the additional unknowns of 811 82, 83 and p. The foundation contact pressure
anywhere in the contact region can then be determined from (38). Since the index of the
equation is -I, consistency conditions are also necessary[l5]. These conditions will be
incorporated directly with the numerical scheme of[l3]. The regularity conditions of continuous
slope are then automatically satisfied.

Solutions symmetric about the applied load may also be obtained from (38) by setting p =0,
83 = 82, and r*(gl) r*(- e). This results in q,)(- t) =- q,2(t) and hence (38) becomes

Then setting

(43)

a singular integral equation for q,2(t) is obtained subject to (32).
The existence of a single noncontact region is determined by arbitrarily setting 8\ = 83 = 0 in

(38). Setting

(44)

yields a singular integral equation subject to (32)\. Symmetric solutions of this type may be
obtained from (41) with the range of integration as well as the limits evaluated from -82 to 82,

with p =0.
Solutions for a stationary load can be obtained by taking an asymptotic expansion for small

speeds or by resolving the problem. For brevity we simply list the results, which are always
symmetric and of the same from as (42) and (43), with

K(x) = L'" k(w)sinwxdw, j(x) =L'" S(w)coswxdw,

k(w) =(1- v')k(w)/h(w), S(w) == (1- v')S(w)/h(w),

h(w) =1- v' + 83(1- v")[l- k(w)], ~(w)= sinh 2w +2w, (45)

k(w) = [2w(w + 1) +1- e-2"']/A(w),

S(w) =(w cosh w +sinh w)/~(w), lr3 =1/2[(1- 1/~83+(1- v')].

NUMERICAL SOLUTIONS

The singular integral equations previously defined will be solved using the collocation
method of Erdogan and Gupta [13]. Attention will be focused on the solution of the system of eqns
(41) and (32) which corresponds to the non-symmetric case with two regions of noncontact. It is
first necessary to normalize the system of equations by the following linear transformations

SS Vol. IS. No. 11-£

s. = 2t (hi +at) r:==~_ (d/+ CI) i == 12
I (hi - al) (hi - al)" (dl - CI) (dl - CI)' ,

(46)
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where

Then defining

G. G. ADAMS

at = OJ, b l = (h, 01 < t < 82

a2 = - 03, b2 = - OJ, - 03 < t < - 01

CI = OJ, d, = O2, 01 < g< I < O2

C2 = -03, d2 = -O\, -03 < gt < -0,.

'l'j(S;) = ¢J;(t), i= 1,Z

q7;(s;) = (1- s/r I/2'1';(s;), i = 1,Z (47)

eqns (3Z) and (41) are approximated (using the method oHIO]) by the following system of
ZN +4 linear algebraic equations

where (13],

and from (46)

a3 7T 2 N 2 - [ 1--L L (1- Su)'I'j(su) + K(gljk - tu)]/;
N +1 j=' J=I tu - gJjK

+Py(gJjK - p) =-liZ, K =1,Z, ... ,N + I, i = I,Z
N

~ (1- s~)q7;(su)= 0, i = I,Z

Su = cos (;: 1)' J = I,Z, ... ,N, i = I,Z

(
7T(ZK - 1») .

r;K = cos ZN + Z ' K = 1,Z, ... ,N + 1, I = I,Z

b·- a· b·+ a·
tu=~su+~, J= I,Z, ... ,N, i= I,Z

d· - c· d· + c·
gl;K=~rjK+~' K= I,Z, ... ,N+ 1, i= I,Z

bj-aj .
I; =-Z-, I = 1,Z.

(48)

The system of eqns (48) is linear in the ZN unknowns q7j(sjJ) but non-linear in Oil O2, 03 and p.
However, in order to facilitate computations 03 may be considered known and P unknown.
Hence the system is linear in ZN + 1 unknowns and an iterative technique is necessary to solve
for O\, O2 and p. It is noted that the parameter p enters into the equations only through (36h and
for specified O\, O2 can be determined very efficiently. By slowly changing 03, good initial
guesses could be made for 01 and O2• Having thus determined O\, O2, P and the function 'I'(t),
the contact pressure in the contact region may be determined by a quadrature of (38), and the
relative normal displacement in the noncontact region from (32) to (34).

RESULTS AND DISCUSSION

In Fig. 4 is a plot of force P vs noncontact region location as defined by 8\, 82, 03 for fixed
speed (Pi =0.4) and material properties (J,L'IJ.I:' =0.5, pilip' =1.0). The related lower boundary
displacements and foundation contact pressures are shown in Fig. 5(a-f). These configurations
correspond to symmetric solutions (a, d), nonsymmetric (c,O, and nonsymmetric with one
noncontact region (b, e). The corresponding values of p are not shown but were in the range
- 0, < p < 0 for (c, f) and O2 < p for (b, e). It is emphasized that only the first two solutions of



Steady solutions for a moving load on an elastic strip 893

p

20

15

10

5

J,
io,,,,
I,
I
I
I

!~,A F
';1,\1"III \,
::
:.•I
I

O!C,F
I,
I

o

-------•• 8,
--82

----- 8,

E

iI­
I
IF
\
\
\
\
\
\

1.0 20 3.0 4.0 5.0 6.0 7.0 B.O

8,,82,8,

Fig. 4. Force P vs non·contact region location for fixed speed (fJ; = 0.4) and material properties (1£'11£" =
0.5. p"lp' = 1.0).

each type are shown; many others exist. Nonsymmetric solution c, with two noncontact
regions, gradually becomes symmetric as the applied force P is increased to the maximum
value possible for configuration c (Fig. 4). At that point it actually coincides with the locally
maximum value for symmetric shape a. Nonsymmetric configurations (b, e) each have a single
noncontact region. As the load P is increased another noncontact region appears which leads to
the development of nonsymmetric shapes (c, f) each of which have two noncontact regions.
Solutions for more than two noncontact regions can be obtained from (38) but are not shown
here.

Fig. 5. Part I.
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Fig. 5. Lower boundary displacements and foundation contact pressure at fixed speed (Ii; = 0.4) and
material properties (p:/p." =0.5, p"/p' =1.0).

It is observed that because of the way in which the speed c enters into the problem, if a
certain configuration is a solution, then so is its reflection through ~l = O. Hence only the
nonsymmetric solutions for which 83 > 82 have been shown.

In Figs. 6-8 are graphs of force P, foundation pressure under the load r*(O), and maximum
relative normal displacement, vs noncontact lengths for fixed speed {3, = 0.4 and different
material pairs, all for symmetric configurations of the type A. The results of Fig. 6 show that as
the stiffness of the foundation increases relative to that of the strip, the maximum force P for
which solutions of the type A exist also increases (at this speed). From Fig. 7 the pressure
beneath the load transmitted to the foundation is shown to be a maximum for the same value of
fh for which P is a maximum (Fig. 6). The relative normal displacement increases monotically
with (J2 (Fig. 8). The maximum value does not occur when P is a maximum. Figures 9-11 show
the corresponding results for the static problem. Note that the force P, the pressure transmitted
to the foundation, and the maximum relative displacement all increase monotically with 82, As
the foundation stiffness increases, the minimum load required for development of noncontact
regions decreases. This is the reverse of the results shown in Fig. 5 but is expected due to the

3.02.01.00.0

5

20r-------------------,

10
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15

Fig. 6. Force 'P' vs non-contact lengths 8, and 82, at fixed speed /3; = 0.4.
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Fig. 7. Foundation contact pressure under the load ,*(0) vs fh, at fixed speed PI =0.4.
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Fig. 8. Maximum relative normal displacement UM vs 92, at fixed speed P; = 0.4.
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Fig. 9. Force 'P' vs non-contact lengths 91 and 82 for static case.
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Fig. 10. Foundation contact pressure under the load ,"(0) VS O2 for static case.
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Fig. II. Maximum relative normal displacement Vmax vs O2 for static case.

crossing of the curves in Fig. 2. Also, in the limit for large P, the results obtained here agree
with those of[l2] and [1] in which gravity has been neglected.

The nonuniqueness of the solutions obtained is due to the steady state solution of this
contact problem. Although uniqueness theorems of elastodynamics apply only to initial value
problems, one may expect unique solutions for the steady problem (except perhaps at certain
critical speeds) in cases where the principle of superposition holds. Such is not the case here
due to the non-linearity associated with the existance of noncontact regions. All solutions given
here satisfy the equations of motion, boundary conditions, have compressive contact stresses, and
do not violate material interference conditions. However, some may not produce local minimums
of the total energy and, therefore, be physically unrealistic. The actual solution (which may depend
upon the initial conditions) would have to be determined from the limit of the appropriate initial
value problem.
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